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INTRODUCTION

Although quantitative systems pharmacology (QSP) mod-
els have been used to save substantial time and money 
in drug development, their use is not as widespread as 
might be expected from these benefits. Lack of buy-in 
from stakeholders is a major hurdle to adoption and can, 
in part, be attributed to lack of confidence in QSP mod-
els and their predictions. In this work, we make the case 
that standardization of model evaluation methods within 
the biotechnology/pharmaceutical (biopharma) commu-
nity would support more extensive use of QSP models. For 

context, we position our proposed framework for model 
evaluation within the broader process of model develop-
ment. However, we primarily focus on methods for model 
evaluation.

We begin by laying out the case for why model eval-
uation is key for expanded use of QSP models, and how 
it fits into other aspects of QSP modeling, such as model 
planning and model building. We also review prior work 
related to model evaluation. We then go into detail about 
methods that can be used for model evaluation. We con-
clude with comments about documentation, software, 
and infrastructure to support model evaluation.
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Abstract
As decisions in drug development increasingly rely on predictions from mechanis-
tic systems models, assessing the predictive capability of such models is becoming 
more important. Several frameworks for the development of quantitative systems 
pharmacology (QSP) models have been proposed. In this paper, we add to this 
body of work with a framework that focuses on the appropriate use of qualitative 
and quantitative model evaluation methods. We provide details and references 
for those wishing to apply these methods, which include sensitivity and identifi-
ability analyses, as well as concepts such as validation and uncertainty quantifica-
tion. Many of these methods have been used successfully in other fields, but are 
not as common in QSP modeling. We illustrate how to apply these methods to 
evaluate QSP models, and propose methods to use in two case studies. We also 
share examples of misleading results when inappropriate analyses are used.
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What is a QSP model?

By definition, QSP models incorporate mechanistic de-
tails.1 For our purposes, we will define a QSP model as 
a mathematical model that incorporates some mecha-
nism and examines some pharmacological effect, but may 
consist of even a single equation (cf. Aksenov et al.2). In 
contrast, Sorger et al.1 require multiple equations in their 
definition of a QSP model, however, they do not state how 
many are required. We allow a QSP model to have only 
one equation as this provides logical consistency, just as a 
1 × 1 matrix is still a matrix. Similarly, we also allow that 
a mechanistic QSP model may span only a single spatial or 
time scale (cf. Hartmann et al.,3 Nazari et al.4). Although 
many QSP models consist of ordinary differential equa-
tions (ODEs), other types of equations can be used,5 and 
our remarks apply more broadly. Physiologically-based 
pharmacokinetic (PBPK) models generally do not include 
pharmacological effects, but can be coupled to a pharma-
cological effect model to make a QSP model.

In summary, our minimal requirements that define a 
QSP model are as follows:

1.	 a mathematical model, with at least one equation; 
that

2.	 incorporates some level of mechanistic detail (could be 
semimechanistic); and

3.	 can be used to quantitatively explore the effects of an 
existing or hypothetical therapy.

Two notable features of QSP models set them apart 
from empirical models, such as many compartmental 
pharmacokinetic (PK)/pharmacodynamic (PD) models. 
The first is their mechanistic basis. Incorporating relevant 
biological mechanisms in the model enables predictions 
into realms that are not feasible with empirical models. 
For example, DILIsym (Simulations Plus) incorporates 
metabolic pathways in the liver to predict toxicities before 
a drug is ever tested in humans.6,7 The second notable fea-
ture is the ability to encompass disparate types of informa-
tion, including mechanistic understanding and parameter 
estimates based on data. This ability to combine all rele-
vant information into a single, predictive model provides 
the strongest possible foundation for rational drug design 
and decision making.

QSP models can benefit drug development

Successful drug research and development (R&D) requires 
tremendous time and financial resources. Achieving one 
approved drug in the United States can take over a dec-
ade8 and can cost more than $1.8 billion.9 Mechanistic 

QSP models can substantially reduce time and cost. An 
early example of a QSP model for type 2 diabetes re-
duced an estimated 40% of the time and 66% of the cost 
of a phase I trial.10 QSP models also have the potential to 
substantially improve efficacy and safety.11 QSP and other 
mechanistic systems models are thus increasingly used 
to support decisions in R&D, including regulatory deci-
sions. A recent publication by authors at the US Food and 
Drug Administration (FDA) acknowledges the value of 
QSP models, stating “published QSP models have dem-
onstrated the utility of QSP modeling in pharmaceutical 
research and development.”12

Problem: QSP models are not getting used 
as much as they could

Despite their demonstrated value in R&D and regulatory 
decision making, QSP models are not as widely adopted 
as they could be.13 While some pharmaceutical companies 
have embraced QSP modeling as an integral part of their 
R&D decision making, others remain reluctant to adopt 
QSP modeling. Similarly, although regulatory submis-
sions with the FDA increasingly include QSP models,14 
these models have largely been in the discovery space and 
have mostly been used as supporting evidence in a larger 
evidentiary package.15 What prevents QSP models from 
being more widely adopted?

Reasons include model complexity, lack of 
consensus on evaluation, short timelines

A 2019 survey of over 100 QSP modelers5 identified sev-
eral major impediments to greater adoption of QSP mod-
eling, in particular: lack of scientists with appropriate 
training, budgetary and infrastructure constraints, and 
lack of management interest and/or support. Of these im-
pediments, budgetary and infrastructure constraints can 
be a result of lack of management interest and/or support. 
In our experience, a major obstacle to management or 
stakeholder buy-in is lack of confidence in a model and 
its predictions. In order to rely on a mathematical model 
for decision making, the model needs to be evaluated to 
understand the uncertainty in its predictions. This is espe-
cially important when QSP model predictions are applied 
in the absence of opportunities for comparison with ex-
perimental data, such as in target identification or feasibil-
ity assessment settings.

Evaluation standards exist for population PK/PD mod-
els (PopPK/PD), which include diagnostic visual predic-
tive checks and shrinkage plots,16 and for the use of PBPK 
models, which include analyzing the effect of perturbation 
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of uncertain parameters on model results.17,18 However, 
the QSP modeling community is still in the process of es-
tablishing standards for QSP model evaluation. For small 
QSP models in data-rich settings (e.g., Aksenov et al.2), 
evaluation methods such as those used for PopPK/PD 
models can be applied. However, QSP models are often so 
complex and data are so sparse that model evaluation is 
challenging.15,19 Because there are no standards for QSP 
model evaluation, evaluation approaches are tailored to 
specific models. The complexity of the models and the 
lack of standard analyses make reviews of QSP models 
significantly more time-consuming than that of PopPK/
PD models.

A consensus on feasible standards for QSP 
model evaluation is needed

A framework of feasible evaluation standards that is 
agreed upon and applied by the wider modeling com-
munity could increase the adoption of QSP models.12,15 
The FDA employees recently wrote specifically about 
this need: “Quantitative and statistical criteria needed 
to assess model quality and assess model uncertainty 
are lacking.”12 As more QSP models are used to make 
business decisions, submitted to journals, or included 
in regulatory submissions, there is a need for a rigor-
ous framework to evaluate QSP models and their pre-
dictive capability. It is our view that establishing such 
a framework is a central challenge that needs to be ad-
dressed to achieve greater adoption of QSP models in 
drug development.

We propose a framework for the 
evaluation of QSP models to contribute to 
such a set of standards

The purpose of this work is therefore to propose a frame-
work of methods for the evaluation of QSP models, and 
recommendations for how and when these methods 
should be applied. This includes consideration of the un-
derlying assumptions of various analysis methods and 
their appropriate applications, along with examples and 
some computational information. In order to avoid QSP 
model evaluation being too complex and time-consuming 
to fit within short timelines, we propose that this frame-
work is applied and executed by the model development 
team to produce a standardized document with the out-
comes of the evaluation process. This document can then 
be reviewed by internal or independent external review-
ers, to minimize the workload that the framework im-
poses on the reviewers.

We make our recommendations in the 
context of prior work in other fields

An additional goal of this work is to introduce the QSP 
community to methods that are already widely used in 
other research fields. Since World War II, researchers in 
applied mathematics and engineering have been develop-
ing model evaluation methods and credibility frameworks 
for the evaluation of quantitative models.20 We present our 
ideas for the evaluation of QSP models within this broader 
context. Although we refer to QSP models throughout this 
work, the methods we review apply to mathematical sys-
tems models more generally, even those that are not cre-
ated based on mechanisms.

BACKGROUND: EXISTING 
FRAMEWORKS IN QSP AND OTHER 
FIELDS

Right question, right model, and right 
analysis

The work involved in model development can be summa-
rized by three general categories, which we refer to as the 
“right question, right model, and right analysis.”21 We de-
scribe these categories below:

•	 Right Question: Mathematical modeling, like many 
other endeavors, should start with a goal in mind. 
Determining the purpose of the work prior to commenc-
ing model building is necessary to ensure that results 
will be maximally useful. In drug development settings, 
the question to be addressed is typically decided by the 
modeler and project team or a subgroup with the appro-
priate domain-area experts, and requires buy-in from 
managers and other stakeholders. The question and 
purpose determined here will impact decisions for the 
right model and the right analysis, see below.

•	 Right Model: Once the “right question” has been 
agreed upon, decisions about an appropriate model 
need to be made. Decisions of scope, scale, and func-
tional form of the equations of the model depend 
on the question being addressed and the resources 
available, including project timelines, access to prior 
models and code, modeler availability and expertise, 
software, computing power, access to domain-area ex-
perts, and quality and quantity of different available 
data types.

•	 Right Analysis: When using a model to make predic-
tions, we need to determine an appropriate level of con-
fidence in those predictions. The context of use (COU) 
and risk assessment of the model use should help drive 
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decisions about the types of analysis that should be in-
cluded.22 These analyses might include verification of 
code, unit and system testing, comparison of the model 
with any available data, and uncertainty quantification 
(see discussion below).

The planned work for each of these categories is im-
portant to establish prior to the modeling, to reduce 
bias in the results. Additionally, to aid in acceptance of 
model predictions, it is important to obtain stakeholder 
alignment for each of these prior to beginning the model 
development.

Frameworks exist for QSP modeling, 
but most provide limited details on 
model evaluation

Multiple groups have proposed QSP modeling frame-
works in recent years, and many of these at least touch on 
all three of the categories listed above. With some excep-
tions that are detailed below, most previous QSP modeling 
frameworks provide few recommendations on specific 
analyses or results that would be most appropriate for the 
evaluation of QSP models (“right analysis”).

How other QSP frameworks touch 
on analysis

Even though the focus of many existing frameworks is 
on addressing the “right question” and “right model,” 
there are some frameworks that provide general discus-
sion of activities that we consider to be part of the “right 
analysis.” Model structure uncertainty (“right model”) is 
often addressed primarily through best practices in model 
building.21,23–26 For example, including domain-area ex-
perts in the discussions is considered a best practice for 
model building.

Uncertainty in model parameters, however, is differ-
ent, in that there are well-established methods to quan-
titatively assess model parameter uncertainty. Friedrich23 
and Gadkar et al.24 recommend sensitivity analysis to 
explore uncertainty. Ribba et al.27 cite the need for more 
identifiability analysis to be performed. Allen and Moore21 
and Bai et al.12 recommend both sensitivity analysis and 
identifiability analysis for parameters. Cucurull-Sanchez 
et al.25 include recommendations such as “run a sensitiv-
ity analysis to identify which parameters have the most 
effect on model responses and how significant is that ef-
fect” and state that “a certain level of structural identifi-
ability analysis of QSP models should be performed and 
reported as a prerequisite to parameter estimation and as 

a component of experiment design.” Zhang et al.28 note 
that “The more complex these models are, the greater the 
challenge of reliably identifying and estimating respective 
model parameters. Global sensitivity analysis provides an 
innovative tool that can meet this challenge.”

We agree that sensitivity and identifiability analyses are 
essential in model evaluation, as they inform us whether 
we can estimate parameters in a model, and how much 
confidence to have in model predictions. In this work, we 
make detailed recommendations for these analyses and 
others. The paper of Cucurull-Sanchez et al.25 mentions 
many of the analyses that we consider; our aim here is 
to organize these analyses into a framework, and include 
concepts such as COU and credibility assessment. In addi-
tion, we provide additional detail, context, strategies, and 
resources for these and other types of analyses.

Ideas from other fields: credibility 
assessment and verification, 
validation, and uncertainty quantification

In order to end up with the “right analysis,” we introduce 
some key concepts from other computational fields. In this 
section, we discuss credibility assessment and verification, 
validation, and uncertainty quantification (VVUQ). These 
concepts capture many considerations in assessing ap-
propriate analysis and use of a systems model.29 A recent 
publication emphasized these concepts broadly applied to 
drug development modeling.30

Credibility assessment of computational models is a gen-
eral framework that has been developed and applied in engi-
neering and operations research settings for decades.20,31,32 
It has been a major focus of the medical device community 
in recent years. Because medical device development orig-
inated from engineering research, the devices community 
has drawn heavily from methods and best practices in en-
gineering domains where modeling and simulation is well-
established. These efforts culminated in the publication of 
the American Society of Mechanical Engineers (ASME) 
verification and validation (V&V)40-2018,22 the first con-
sensus standard on the topic of credibility of computational 
models for medical device applications.

ASME published V&V40-2018 to provide guidance for 
V&V in the medical devices industry. It is based on previous 
ASME standards for other industries, which in turn drew 
from the National Aeronautics and Space Administration 
(NASA) standards (cf. NASA-STD-700933). The ASME 
V&V40-2018 identifies three key assessments that should 
be made before model evaluation begins. First, the ques-
tion of interest is defined as the specific question or deci-
sion that the model will be used to address. For example, 
the model may be intended to inform a prediction of the 
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first-in-human dose for a compound to be used in clinical 
trials.

Second, the COU is the role of the computational model 
in addressing the question of interest. This includes a de-
scription of the key features modeled, the simulations to be 
performed, the model outputs to be analyzed, and how those 
results will be used with other (noncomputational) evidence 
in addressing the question of interest. The COU helps to de-
termine the appropriate level of assessment needed for a 
model’s intended use. Requiring that credibility assessment 
be performed in the framework of the COU is a key feature 
of credibility assessment in the VVUQ literature/ASME 
V&V40-2018, and is arguably a major difference from the 
type of evaluation regularly performed for QSP models. For 
instance, QSP models are often developed for multiple po-
tential applications (i.e., multiple potential COUs) and are 
commonly evaluated by comparing model predictions with 
experimental results under a range of conditions. According 
to the ASME V&V40-2018 standard, although such activi-
ties are important, it would not be appropriate to refer to the 
model as generically validated, even with strong validation 
results in certain settings; the assessment of whether the 
agreement between the model and experiment is sufficient 
requires consideration of the COU.

The third stage in ASME V&V40-2018, after specifica-
tion of the question of interest and the COU, is assessment 
of the risk associated with inaccurate predictions from the 
model. This informs the scope of the model validation pro-
cess: high-risk decisions that are based solely on evidence 
from model predictions require the highest level of as-
sessment as compared to low-risk decisions where model 
predictions are used in conjunction with other evidence. 
The risk is defined as a combination of two factors: (i) the 
consequence of a bad decision being made (e.g., “major” if 
there is a possibility of patient death); and (ii) the level of 
influence of the model on the decision being made (e.g., 
“moderate” if other information, such as data from animal 
experiments, will be used in making the decision). Overall, 
the framework proposed in ASME V&V40-2018, while de-
veloped for medical device applications, is general and can 
be applied and can add value to a wide range of domains 
including QSP modeling. Once the question of interest, the 
COU, and the risk assessment have been determined, the 
model evaluation analysis in credibility assessment can be 
described in the broad categories of VVUQ.34

•	 Verification checks that the computational implementa-
tion correctly encodes the intended mathematical model. 
Verification is often performed by having the modeler per-
form some basic checks and/or an independent modeler 
perform a quality control assessment of the model code.

•	 Validation assesses how accurately the model captures 
the behavior of the biological or physical system.

•	 Uncertainty quantification focuses on estimating the 
uncertainty due to model structure, data measurements, 
and parameter estimates.35 Note that when we say “un-
certainty,” we are including both variability and error 
as sources that contribute to uncertainty in the model 
response.

MODEL EVALUATION 
FRAMEWORK

Our framework consists of multiple steps in model evalu-
ation, as shown in Figure 1. We begin by describing the 
major stages of these activities.

1.	 Planning the work: In this stage, the model aims, 
scope, and risk are used to plan the model building 
and model evaluation (“right question, right model, 
right analysis”).

2.	 Building the model: In this stage, the initial model 
is built. Although this often represents a large part of 
the time spent on a project, we will not go into detail 
about this. Instead, we refer the reader to previously-
published frameworks focused on QSP model building 
for guidance on best practices in building the initial 
model.21,23–26

3.	 Performing the analysis: In this stage, the evalua-
tion plan is carried out. The evaluation framework in 
Figure 1 shows a workflow and order in which these 
evaluation activities can be carried out. The inputs to 
the analysis and evaluation are a detailed plan, an ini-
tial model with parameter distributions, and any data 
that will be used for calibration or model evaluation. 
The evaluation activities laid out in the workflow are 
explained in detail in the next section. We recommend 
that all steps of the planning, model building, and eval-
uation process are documented for internal and/or ex-
ternal audit purposes.
In this paper, we will consider “model evaluation” to 

include any of the full span of activities that can be per-
formed to evaluate and understand a model and its pre-
dictions. We will use “credibility assessment” to mean a 
formal assessment of model credibility (for example, an 
assessment that uses the ASME V&V40-2018 standards), 
which is primarily applied to models in high-risk and/or 
highly-regulated settings.

Planning the model building and analysis

Defining the aims, scope, and risk in advance of the model 
building helps to give clear purpose and direction to the pro-
ject. Depending on the setting, the planning stage may be brief 
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(e.g., for a small model in the discovery stage) or extensive (e.g., 
for a model used in a regulatory submission). In this section, 
we describe all steps of the planning stage in nomenclature fa-
miliar to the QSP community, but we also include reference to 
the ASME V&V40-2018 framework where appropriate.

Model aims and scope

The model aims describe the primary questions that the 
model is intended to address (cf. ASME V&V40-2018,22 
question of interest). Typically, there is a decision to be 
made, and the model will help answer questions to inform 
this decision.

The model scope includes the model scale and size, 
which components and pathways will be included, and 
the level of detail to be used for the modeling (e.g., semi-
mechanistic, or mechanistic but fit-for-purpose). As men-
tioned above, at this point, it is also important to consider 
constraints such as time, and available resources includ-
ing data, modeler expertise, and computing power.21,23,24 
In addition to modelers, domain-area experts in the dis-
ease and relevant biology should be included when de-
fining the model aims and scope, as well as during the 
model building process. Alignment with these experts 
should ensure that all parties can have some level of 
confidence that the science has been appropriately rep-
resented in a model. Choices such as model scale, model 

F I G U R E  1   The planning stage of a modeling project includes assessing the context of use of the model and using that knowledge to 
develop a plan that defines which modeling and model evaluation activities will be performed. Once the initial model has been built, the 
initial model with parameter distributions, and any available data (for calibration and/or comparison to model predictions) are inputs to 
the analysis and evaluation. The workflow shows suggested analyses and how they are related to one another. Rectangular boxes represent 
activities, whereas the inputs and outputs for activities are represented as circles. The final output is a calibrated model with parameter 
estimates and/or distributions, as well as documentation of the planning, modeling, and evaluation activities that were performed and 
the results obtained. Analysis and evaluation steps may suggest desired changes in the model. In that case, this new model can undergo 
the same analysis steps, starting with model verification. See Table 2 for specific documentation recommendations for model evaluation 
activities
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size, and model assumptions should be made clear, and 
decisions and assumptions documented.

The COU as outlined in ASME V&V40-2018 is another 
important consideration in defining the model scope. This 
includes what will be modeled and how the model outputs 
will be used to address the model aims.

Data

Before the analysis can be performed, any calibration and 
evaluation data should be specified. In addition to evalu-
ating the full model, it can be important to evaluate sub-
components of the model, especially for large models.

•	 Calibration data: Calibration data are those used to es-
timate the values of specified parameters in the model. 
QSP models often use multiple data sources to calibrate 
different parts of the model, integrating them into a uni-
fied model. These data sources can come from a variety 
of experimental settings: e.g., in vitro or in vivo, preclin-
ical or clinical studies, and patients or healthy subjects.

•	 Evaluation data: Evaluation (or “validation”) data are 
used to compare with the model predictions. Although 
we sometimes use the terminology of model validation 
in this setting, we prefer the term evaluation, which sug-
gests a spectrum of model prediction quality, rather than 
a “yes/no” threshold. The COU and risk assessment will 
determine whether and which data are required to eval-
uate the model outcomes. For example, in data-sparse 
settings, such as discovery or early development phases, 
preclinical PK/PD data may be used for model evalu-
ation rather than clinical data. On the other hand, in 
high-consequence settings with decisions based solely 
on model predictions, high-quality and relevant data 
are necessary to ensure that the model’s predictions are 
evaluated appropriately.

Model evaluation plan

QSP models can vary significantly in complexity, scope, 
and application. This makes it difficult to converge on 
a single set of analyses that is suitable for evaluating all 
QSP models. What we propose in this work is a system-
atic framework for selecting the appropriate analyses for a 
given model and setting.

Plans for model evaluation should be made in advance 
of performing the model evaluation. It is also important to 
decide on criteria for certain activities before performing 
them. Examples include which goodness-of-fit criterion 
to use (e.g., corrected Akaike Information Criterion), or 
which scenarios and outcomes the model should be able 

to predict to ensure the model and its implementation per-
form as intended.

Evaluation plans should be informed by the risk asso-
ciated with using the model’s predictions. Two major fac-
tors determine this risk: the consequence of the decision 
to be made, and the relative contribution of the model pre-
dictions on that decision. In high-risk settings, a formal 
assessment may be needed. Note that for small models 
in data-rich settings, traditional evaluation methods for 
(population) PK/PD models may be sufficient.36

Credibility assessment

When a more formal model evaluation or qualification is 
needed, we can turn to the approach proposed in ASME 
V&V40-2018. The ASME V&V40-2018 standards base all 
recommendations of model evaluation on the risk in-
volved in model use. Users can themselves define the level 
of model evaluation (referred to as a “credibility assess-
ment”) appropriate for the level of risk. Determination of 
risk is made by considering the question of interest, COU 
of the model, how much the model will be relied on for a 
decision, and the seriousness of the consequences result-
ing from the decision.

Based on these considerations, ASME V&V40-2018 
defines various “credibility factors,” which are specific 
aspects of the verification and validation activities, and 
asks the practitioner to set goals for each of the credibility 
factors based on the overall risk assessment; higher-risk 
settings require stricter goals and more model evaluation 
activities. Kuemmel et al.37 provide detailed guidance and 
examples for applying the ASME V&V40-2018 standards 
to PBPK models. A similar approach can be used for other 
types of systems models.

Here, we provide two scenarios with examples of model 
evaluation choices to illustrate the use of the model evalu-
ation framework. We emphasize that such choices should 
be aligned with stakeholders before implementation.

Example 1: Potential pathway target

Model Aim: Predict whether targeting a newly-identified 
pathway can achieve meaningful therapeutic effect.

Model Scope: The model will be used to support a “go/
no-go” development decision by modeling the level of ther-
apeutic effect possible to achieve with a potential pathway. 
If the model predicts that the maximum possible effect size 
is not clinically relevant, then this supports a “no-go” de-
cision to not develop compounds that target that pathway. 
The COU is that only the model results will be relied upon 
for making this decision. There are limited resources, data, 
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and time available for this project. Parameter information 
will primarily be based on the literature.

The model will be fit-for-purpose and mechanistic, 
based on a first-principles understanding of the underly-
ing pathophysiology, and will include the potential ther-
apy and its effect on the clinically-relevant outcome.

Model Risk: Model influence is high because model 
predictions are the key evidence for go/no-go decision. 
Decision consequence is low/medium as the outcome im-
pacts only company decisions but not patient lives. This 
results in a medium-level model risk.

Model Evaluation Plan: Verify model implementation 
and code. Perform a Morris method global sensitivity 
analysis to prioritize which parameters should be care-
fully estimated or sourced from literature. Consider in-
cluding confidence intervals on parameter estimates and 
predictions. A virtual population approach can be used for 
exploration of possible effect sizes.

Example 2: Individualized patient dosing

Model Aim: Provide physicians with individualized dosing 
strategies for combination therapy for a specific disease in 
renally-impaired patients who have specific biomarkers.

Model Scope: The COU is that the model will be used 
to support determination of safe and efficacious indi-
vidualized dose regimens for renally-impaired patients. 
Clinical data at standard dosing regimens are available 
for patients who are and patients who are not renally 
impaired.

The model will be a small, semimechanistic QSP model. 
The model includes compartmental PK models for the 
therapies, coupled with a semimechanistic model of kidney 
function that incorporates the effects of the drug therapies.

Model Risk: Model influence is moderately high, be-
cause patients will be treated with the predicted dosing 
strategies, without further clinical data for safety or effi-
cacy beyond the standard-dose data. Decision consequence 
is high because the drug combination has significant and 
irreversible adverse effects at higher doses. This results in 
a high model risk.

Model Evaluation Plan: Perform all possible VVUQ 
activities with a focus on using hold-out data from spe-
cific renal-impairment conditions to qualify whether the 
model is able to predict outcomes for these patient popu-
lations. Because the aim of this work is to provide individ-
ualized dose regimens, individual parameter estimation 
(using nonlinear mixed-effects modeling) will be per-
formed. For this reason, correct determination of which 
parameters can or cannot be estimated will be critical for 
success, and rigorous sensitivity and identifiability analy-
ses will be needed.

Building the model

Building an initial model often represents the major-
ity of time invested in a modeling project. However, in 
this work, we focus on the model evaluation analysis 
that is performed once the initial model has been devel-
oped. When a model is reused for multiple purposes or 
is developed as a platform, it is important to ensure that 
subsequent uses are all within the COU of the model. A 
good record of the model-building process can provide 
the necessary information to decide if such purposes are 
appropriate.

For guidance and examples on building the initial 
QSP model based on the model aims and scope, we refer 
to frameworks such as those by Friedrich23 and Gadkar 
et al.,24 which provide recommendations for best prac-
tices. We additionally recommend that specification of 
initial parameter values and distributions be considered 
part of the initial model specification. This parameter in-
formation is needed in model analyses such as calibration 
and sensitivity. In the subsequent sections, we assume an 
initial model has been computationally implemented and 
initial parameter distributions have been specified.

Performing the analysis and 
model evaluation

In this section, we discuss model evaluation activities in 
detail and provide recommendations on when to use a par-
ticular method. An overview of a wide range of possible 
evaluation activities is provided later, in the Documentation 
section. If at any stage it is decided that a model should be 
modified or that a different model will be considered, the 
process can be started from the beginning for the new model.

Verification: basic model and code testing

Verification is an essential step to ensure consistency be-
tween the implementation and the mathematical descrip-
tion of the model. In this section, we will focus on model 
and code verification, rather than verification of the un-
derlying software, such as ODE solvers and optimization 
algorithms. We do this because most QSP models are 
developed in standardized environments and simulated 
using validated ODE solvers (e.g., the SUNDIALS suite 
by Hindmarsh et al.,38 MATLAB’s ode15s in MATLAB 
(MathWorks) by Shampine and Reichelt39) with exten-
sive testing performed by the developers. Pathmanathan 
and Gray40 provide a more-detailed description of verifi-
cation methods for ODE models and nonstandard ODE 
solvers.
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Below we list a number of best practices for the verifi-
cation of models and code: 

•	 Equations: Starting from a mathematical model, we 
want to make sure that the model implementation 
matches the original equations. Discrepancies to look 
for include missing terms and the signs (±) of terms in 
the right-hand sides of the equations.

•	 Initial values and parameter values: An initial 
value should be provided for each state in the model. 
Similarly, for every parameter in the model, a nominal 
(initial) value and distribution should be provided. As 
a best practice, the source of these values (e.g., a litera-
ture reference or a dataset that was used for calibration) 
should be documented to understand the origin and re-
liability of each of the values. If any initial or parameter 
value is undefined, the model cannot be verified and its 
simulations cannot be reproduced.

•	 Units: In order to avoid order-of-magnitude mistakes, 
each parameter and state should have units defined. 
When a parameter or state is dimensionless this should 
be explicitly indicated. The units should be consis-
tent throughout the model (e.g., all time in hours, all 
amounts in moles, and all volumes in liters). Using a 
modeling environment that can automatically check 
and convert units (e.g., SimBiology) can help enforce a 
correctly defined and consistent unit system in a model.

•	 System-level tests: Basic model simulations should 
be run to determine if they qualitatively agree with 
known biology. Additionally, “what-if” scenarios can 
be used to investigate a QSP model and its implemen-
tation. When model simulations of the scenario agree 
with anticipated outcomes, this builds confidence in the 
model and implementation. Conversely, discrepancies 
can help identify problems with the model definition or 
implementation. Examples include: 
○	 With increasing dose, does the concentration 

increase?
○	 If all clearance routes are blocked, does drug 

accumulate?
○	 Do the concentrations ever become negative?
○	 Do the concentrations remain at zero if no dose is 

administered?
○	 If a therapy achieves its effect by modulating the glo-

merular filtration rate (GFR), is the effect of the ther-
apy enhanced with increasing GFR?

Each of these scenarios can be evaluated by run-
ning a simulation under the specified conditions. 
Different models can have different tests, so the 
responsibility of designing these tests lies with the 
model developer or reviewer. They can be consid-
ered “system tests” as they test the full QSP model, 
in contrast to unit tests, which are commonly used 

to verify individual aspects of model implementa-
tion during development.

•	 Mass balance: Ensuring mass balance is common prac-
tice in PBPK models where it can be used to keep track 
of the total mass of a drug as it is absorbed, distributed, 
metabolized, and excreted, and also to ensure that the 
blood flow through each of the tissues is consistent with 
the total blood flow.41 Similar techniques can be applied 
to QSP models for PK, but also, for example, in hemato-
logical models to track different types of blood cells and 
ensure they are all accounted for. For disease areas such as 
metabolic diseases, energy balance can also be applied.42 
Lastly, setting up balance equations can also be a way to 
monitor numerical drift/error that results from numerical 
integration of the differential equations in a QSP model.

•	 Reproducibility: A basic principle of scientific meth-
ods is the reproducibility of experiments. In mathemat-
ical modeling, this translates to being able to reproduce 
the simulation results from a publication. To facilitate 
this, published models should include all parameter 
values and units, as well as the full code that was used 
to run associated simulations. If any random numbers 
were generated (e.g., when sampling from a distribu-
tion), the method and the random seed should be re-
ported. In addition, using software that is compatible 
with a common mark-up language, such as SBML, al-
lows the model to be run in different modeling environ-
ments. Sharing the experimental data that were used to 
estimate parameters would enable review of the model 
calibration process. Someone implementing a published 
model should be able to re-create key figures or predic-
tions just from the information in the publication.43

Sensitivity analysis

A model output is said to be sensitive to one or more pa-
rameters if certain changes in those parameters result in 
substantial changes in the model output of interest. The 
parameters that cause substantial changes in model out-
put are called influential parameters. A sensitivity analy-
sis can be used to quantify the extent to which changes 
in various parameters affect the model output. The more 
influential a parameter is on a model output, the more 
important it is that the parameter is well-estimated, to in-
crease confidence in model output predictions. Chapters 
14 and 15 of Smith35 provide a detailed foundation on the 
theory of local and global sensitivity analysis.

Sensitivity analysis can be valuable for the planning 
and prioritizing of experiments to obtain better estimates 
of influential parameters, in order to improve confidence 
in model predictions. Sensitivity analysis also provides a 
method for reducing the number of free parameters in a 
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model. Noninfluential parameters can be fixed (or “fro-
zen”) to nominal values without substantially impacting 
model output predictions. This reduction in the number 
of free parameters enables more-thorough exploration of 
the subspace of influential parameters, providing greater 
confidence in model output predictions, and can provide 
a basis for model reduction.35 The relative influence of 
input parameters can also be used to prioritize potential 
therapeutic targets in drug discovery.44

Local sensitivity analysis

Local sensitivity analysis (LSA) is performed at a single 
point in parameter space. With a one-at-a-time (OAT) 
method, a single parameter is varied, and the size of the 
change in a response output is noted. This technique is 
informative for model outputs that are linear or additive 
in the input parameters. LSA can also be informative for 
models with parameters that have been well-estimated, 
as, for example, in the work of Schoeberl et al.45 If we have 
high certainty in the nominal parameter values, then we 
can be assured that we are in an appropriate location in 
parameter space while performing the analysis.

LSA may not be considered an appropriate sensitivity 
analysis method for models that are not linear or additive, 
for settings in which some of the input parameters are un-
certain, or for models that may have interactions between 
input parameters. In these cases, which are common for 
QSP models, global sensitivity analysis is recommended. 

Numerous examples in the literature document that mis-
leading results can be obtained when LSA is used in an 
inappropriate setting (cf. Thogmartin46). Figure  2 shows 
a simple example of how the results from an LSA are af-
fected by the point in the parameter space at which the 
analysis is performed.

Why use global sensitivity analysis?

In larger models, the results from LSA can be even more 
dependent on the calibration point than the simple model 
used for the example in Figure 2. Whereas an LSA is per-
formed at one location in the parameter space, a global 
sensitivity analysis (GSA) is performed across a domain 
within the parameter space that is defined by the modeler.

The results of a GSA represent the sensitivity of the 
model outcomes to the input parameters across this pre-
defined domain, typically as a weighted average. In this 
way, GSA results depend on the distributions of the input 
parameters, in addition to the model structure. In this 
way, the input parameter distributions are inputs for the 
sensitivity analysis, because the outcome depends on 
them. Because of this direct dependence, it is important to 
carefully select parameter distributions and ranges, just as 
we carefully select the model structure.

However, the results of GSA do not depend on a spe-
cific choice of parameter values (a specific model calibra-
tion) and can thus provide better information for decision 
making (e.g., which parameters to calibrate and which to 

F I G U R E  2   For this analysis, a one-compartment pharmacokinetic model for phenytoin was used with ka = 0.8 1/h, Vcentral = 42 L, 
Vmax = 18.75 mg/h, Km = 2.5 mg/L, and the model was simulated for 24 h after a single p.o. dose of 30 mg.92,93 Panels (a) and (b) represent 
the results from local sensitivity analyses (LSA) of Cmax (maximum drug concentration in the central compartment) to the parameters in 
a one-compartment PK model for phenytoin as described below. For panel (a), Km = 1.25 mg/L; for panel (b), Km = 5 mg/L. As the results 
show, the ranking of the sensitivities is different when performing LSA based at different points in the parameter space. A Sobol global 
sensitivity analysis (GSA, panel (c)) was also performed for Cmax with the same model, for 1000 uniformly distributed samples across all 
parameters within a range of 50% and 200% of their nominal values (namely, Km = 2.5 mg/L and the other parameters as listed above). The 
GSA results give similar rankings as the LSA in panel (b), but not in panel (a). GSA is recommended if there is substantial uncertainty in the 
estimated parameters, if the model contains nonlinearities or is non-additive, or if there are interactions between input parameters. For the 
LSA, the scalar values represent the normalized absolute value of the sensitivity at the time of Cmax. For the GSA, the scalar value represents 
the first-order Sobol sensitivities of Cmax. Analyses performed using MATLAB and SimBiology R2020b; code is included in supplemental 
information. GSA, global sensitivity analysis; LSA, local sensitivity analyses
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fix) in settings with uncertainty in parameters. We there-
fore recommend the use of GSA for sensitivity analysis for 
most QSP model analyses, rather than LSA.

GSA analyses are currently not widely used in the QSP 
modeling community. In fact, Saltelli et al.47 systemati-
cally reviewed the literature of 19 scientific disciplines 
that use sensitivity analysis (including chemistry, econ-
omy and finance, engineering, environmental sciences, 
and medicine), and found that publications in pharma-
cology and toxicology have the lowest percentage use of 
GSA for sensitivity analysis among all 19 disciplines. For 
a more complete mathematical explanation of the limita-
tions of LSA and how GSA can address these limitations, 
we refer to Saltelli and Annoni.48

Global sensitivity analysis methods

Many GSA methods can be classified as derivative-based, 
correlation-based, or variance-based. Derivative-based 
methods include the Morris method, which calculates 
an OAT “elementary effect” measure of sensitivity at a 
given point in parameter space, and looks at a type of av-
erage over all the sampled points in parameter space. This 
method is easy to implement and relatively fast to com-
pute. In addition, it can be applied to models with nonlin-
ear, nonmonotonic outputs and can also be applied when 
parameters have interactions.49

Partial rank correlation coefficient (PRCC) is simi-
larly easy to implement, and can be applied to nonlin-
ear, monotonic model outputs even when parameters are 
correlated.50 For PRCC, the sampling of inputs needs to 
match the structure of the input distributions, including 
any correlations, in order for the sensitivity metric gener-
ated from the samples to be accurate.51,52

The variance-based GSA methods include Fourier am-
plitude sensitivity test (FAST), Sobol, and the extended 
FAST (eFAST).53–55 These methods are applicable to a wide 
range of model settings. They can be applied to nonlinear, 
non-monotonic model outputs, even when the input pa-
rameters have interactions. These methods apportion vari-
ability in the model output to each of the model inputs.56

Variance-based GSA methods, such as Sobol and 
eFAST, result in first-order and higher-order indices. 
The first-order indices indicate the variance that can be 
attributed to a given single parameter. The total-effect 
index for a given parameter indicates the variance that 
can be attributed to that particular parameter, plus all of 
the interactions of that parameter with other parameters. 
For example, for three parameters, the total-effect index 
for parameter 1 is ST,1 = S1 + S1,2 + S1,3 + S1,2,3 but does 
not include S2, S3, or S2,3. Note that if a first-order index is 
large, then the corresponding parameter is influential on 

the output. In addition, if a total-order index is small, then 
the corresponding parameter is noninfluential, and could 
be frozen during subsequent analysis.35

Liu et al.57 published an example of a complex model 
that had similar results for both the Morris and Sobol GSA 
methods. In Table 1, we compare several types of sensitiv-
ity analysis.

GSA can provide information on interactions 
between parameters

Interactions between parameters can be detected when 
changes in two or more parameters result in no change in 
response. When calculating sensitivity scores for an LSA, 
each derivative-based score is calculated with respect to 
only one parameter, which makes it an OAT method. 
As a result, an LSA cannot identify interactions between 
parameters.

The Morris method GSA relies on multiple derivative-
based LSA evaluations and is therefore still an OAT 
method.48,58 A mean and standard deviation can be calcu-
lated from the individual “elementary effects” evaluations 
to represent the final outcome of a Morris method GSA. 
Because the sensitivities are calculated one-at-a-time, it is 
not possible to distinguish results that may reflect interac-
tions between parameters or nonlinearity of the output.59 
A high standard deviation from a Morris method GSA can 
be interpreted in two ways: either the model response is 
highly nonlinear in that parameter or there may be inter-
actions with other parameters. Because of this ambiguity 
in interpretation, other GSA methods are needed to better 
understand interactions between parameters.

Note that interaction between parameters (such as 
for parameters x1 and x2 when the output is y = x1*x2) is 
different than dependence of parameters (such as when 
parameter x2 is a function of parameter x1). Although 
variance-based GSA methods can be applied when there 
are interactions between parameters, most are not appro-
priate when parameters are not independent. However, 
Kucherenko et al.60,61 have developed GSA methods that 
can be used when parameters have dependencies.

Strategy for performing GSA

Global sensitivity analysis methods tend to be computa-
tionally expensive. The right column in Table 1 gives an in-
dication of how the computational expense scales with the 
number of parameters (P) under investigation. Clearly, the 
variance-based GSA methods are the most computation-
ally expensive and do not scale as well with increasing P. 
For example, for P = 20, a variance-based algorithm would 
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require ~23 million evaluations just to sample the corners 
of the 20-dimensional parameter space and to evaluate 
both first-order and total-order sensitivity indices.

To mitigate this, a screening with the Morris method can 
be performed first with all the input parameters that are of 
interest (Saltelli and Annoni 2010). The sensitivity indices 
from a Morris method GSA can be good proxies for those of 
variance-based sensitivity analyses.49 The parameters that 
are identified as noninfluential can be fixed (or frozen) to 
nominal values without substantial impact on the model 
output. A variance-based (Sobol/eFAST) and/or a PRCC 
sensitivity analysis can then be performed for the most in-
fluential parameters determined by the Morris method.59 
The number of parameters selected for this second GSA 
may be on the order of 10, but will depend on computa-
tional capacity. Some researchers advocate performing both 
a PRCC and a variance-based sensitivity analysis because 
each approach results in different insights.62

Choosing the model response/output or 
quantity of interest

There are several considerations when choosing which 
model response or quantity of interest (QOI) to use for a 
sensitivity analysis (SA):

•	 What is the QOI or response variable of interest? This 
can be guided by the model aims and question at hand. 
Examples include plasma concentration, tumor size, 
and blood pressure.

•	 One or multiple responses? You may have both an effi-
cacy and toxicity response of interest. Performing SA on 
all quantities of interest is important, because responses 
can be sensitive to very different sets of parameters.

•	 Scalar or time-varying? SA methods can use time-
dependent responses as the model output of interest, 
which can reveal whether a parameter is more influen-
tial at the start of a simulation or toward the end. Note 
that using a time-varying QOI can make it difficult to 
rank-order the sensitivities. However, a time-dependent 
response can be turned into a scalar by using metrics, 
such as a mean or final value.

•	 Which metric? Using a scalar as the model output of 
interest requires the choice of metric to reduce a time-
dependent response (e.g., drug concentration) to a sca-
lar. Examples of such choices include the maximum 
concentration or effect, the area under the curve (AUC) 
of concentration during a specified time interval, or a 
final concentration or effect.

The choice of model response can significantly affect 
SA outcomes. Here, we give an example of the effect of 

using an AUC or maximum concentration (Cmax) function 
as the metric to reduce the drug concentration to a scalar 
model output. We consider the same one-compartment 
model with first-order absorption and enzymatic clear-
ance that was shown in Figure  2. A Sobol GSA shows 
entirely different results in Figure 3 between using AUC 
or Cmax as model outputs. Interestingly, absorption rate 
constant (ka) does not appear to be an influential parame-
ter, especially when using AUC as the model output. This 
can be explained because the AUC is independent of ka in 
this model, as long as the simulation is sufficiently long 
to allow the concentration to return to zero and the PK is 
linear.

Reproducibility and random seed

Most GSA methods include some form of random sam-
pling of the parameter space. Fixing the random seed used 
for sampling ensures complete reproducibility, but should 
only be done after determining a sufficiently large sam-
ple size. This can be quickly explored by re-calculating the 
sensitivity indices from subsets of the original sampled 
points. Because using subsets of the original samples can 
give an underestimate of appropriate sample size, it is a 
good idea to then change the random seed to refine the 
estimate of sample size.

Identifiability analysis

A parameter is said to be identifiable if there is enough in-
formation to uniquely estimate a value for it. Identifiability 
analysis is an essential task to perform before finalizing 
parameter estimates. In addition to determining which 
parameters can be estimated, identifiability analysis can 
also be used to decide how to simplify a model struc-
ture, decide if additional data should be collected, and to 
optimize the type of data and sampling sites to be used 
experimentally.63

Once we have determined which parameters the model 
output is most sensitive to, we can use identifiability 
analysis to determine whether it will be possible to esti-
mate these parameters. This is important, because com-
putational software uses numerical approximations, and 
therefore parameter estimates may be supplied for these 
nonlinear systems even in cases where the parameters 
are not identifiable. This can have the very serious conse-
quence of obtaining misleading model predictions.

The paper of Kao and Eisenberg64 examines a widely-
used simple model and determines that the model pa-
rameters are practically unidentifiable: two different sets 
of parameter values give indistinguishable fits to data. 
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With one of the parameter sets, a specific intervention 
appears highly effective. However, with the other param-
eter set, the same intervention appears ineffective. The 
broad usage of this model before this identifiability anal-
ysis was performed, and the policy implications of its pre-
dictions, make this a compelling case for the importance 
of identifiability analysis in the interpretation of model 
predictions.

The two types of identifiability, structural and practical 
(both mentioned above), will be discussed in detail in the 
next sections. Broadly, structural identifiability depends 
only on the model structure and assumes the outputs of 
interest can be measured at all times with arbitrary preci-
sion. Practical identifiability depends on the data actually 
available, rather than assuming all possible measurements 
are available. Structural identifiability can be considered 
to be a “low bar” that must be passed: if parameters are 
not structurally identifiable (when all data are assumed 
available), then it is impossible for them to be practically 
identifiable (when only limited data are actually avail-
able). We recommend applying structural identifiability to 
narrow down the set of parameters. If appropriate data are 
available, then practical identifiability can also be applied, 
and can potentially narrow down the set of identifiable 
parameters even further.

Structural identifiability

Structural identifiability determines which parameters 
can be uniquely estimated, based only on information 
about the structure of the model and which types of out-
puts are planned to be measured.

We explain the concept of structural identifiability 
using the simple example of a system of linear equations. 
Consider a model given by the system of equations below, 
where x and y are unknown:

For this system of linear equations, we can calculate 
the determinant of the matrix M, where

If the determinant Det(M) is nonzero, then the equa-
tions are independent. If Det(M) = 0, the equations are 
not independent. For linear systems, if there are two 
independent equations and two unknowns, then we 
can solve for them. In this example, Det(M) = (3)(−1) –  
(1)(2) = −5 ≠ 0, so the equations in this system are 

independent, and the values of x and y (the unknown pa-
rameters in this system) can be uniquely determined. As 
illustrated in Figure 4, this system of equations can be rep-
resented graphically as two lines that intersect in a single 
point (because the equations are independent).

Although QSP models are usually nonlinear, and are 
often larger and more complex than the example above, 
we can use a similar approach. When a model is given by a 
set of equations, there are calculations we can make to de-
termine whether we can uniquely solve for the unknown 
parameters, given the model structure and the location 
of the parameters within the model. Several free software 
packages are available for performing structural identifi-
ability analysis. The methods they use differ in the types 
of models they are able to analyze.

•	 COMBOS65 is a web application that allows users to 
type in model equations and find subsets of parameters 
that are identifiable. It relies on Gröbner bases to com-
pute identifiability. This is a theoretically sound method 
to determine which parameters or combinations of pa-
rameters can be estimated, given the model structure. 
However, the method can be computationally intracta-
ble, and thus is limited in its practical use when models 
are complex.

•	 Differential Algebra for Identifiability of Systems 
(DAISY63,66) is a stand-alone software package that 
can be used to perform structural identifiability anal-
ysis. As its name implies, it uses differential algebraic 
techniques to compute structural identifiability. This 
method only works for functions defined in polynomial 
or rational form.

•	 Generating Series for testing Structural Identifiability 
(GenSSI67) is a package that runs in MATLAB and can 
handle any nonlinearity that can be defined by analytic 
functions. The generating series method starts with the 
fact that every analytic function has a unique Taylor series 
expansion. Taking derivatives of both sides of this equa-
tion provides additional equations in the same variables. 
Generating series use Lie derivatives, a generalization of 
usual derivatives. Lie derivatives allow for judicious di-
rections to be used for taking derivatives, which makes 
the calculations more efficient. If the equations obtained 
from taking derivatives yield enough equations that are 
independent, we can determine whether certain parame-
ters are identifiable. A challenge when using this method 
is that there is no way to know in advance how many 
derivatives need to be computed to determine whether a 
given set of parameters is identifiable. If the number of 
derivatives to calculate is set too low, the result may be in-
conclusive, and an additional run with more derivatives 
may be needed. On the other hand, due to the significant 
computational time needed to compute the derivatives, 

3x+y=6

2x−y= −1

M =

(
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it is best to not set an excessively high number of deriva-
tives to be computed. Even with these challenges, it is one 
of the better methods available.

Practical identifiability

Once we have determined a set of parameters that are 
structurally identifiable, we can test whether those pa-
rameters are still identifiable once we look at the avail-
able data. This practical identifiability can only hold for 
parameters that are structurally identifiable, and thus will 
yield the same or a smaller set of parameters as structural 
identifiability analysis. Parameters with narrow likely dis-
tributions are considered practically identifiable. Here, we 
list three methods for performing practical identifiability:

•	 Markov chain Monte Carlo (MCMC) sampling: To 
perform practical identifiability analysis, we can use 
MCMC with Metropolis-Hastings sampling of the pa-
rameter space. We compute the model output at various 
locations in parameter space and compare it to the data 
by computing a likelihood ratio. For a given model out-
put at a given point in parameter space, a high enough 
likelihood ratio means we keep that point, and a low one 
means we discard that point. We end up with a distribu-
tion of likely points in our parameter space. If a specific 
parameter has only a narrow range of values remain-
ing, then we say that point is practically identifiable. If 
a parameter does not have substantial restrictions on its 
range, then the parameter is not practically identifiable. 

Although the conclusion is made qualitatively, the com-
putations are well-defined and quantitative. Even when 
individual parameters are not practically identifiable, 
the likely distribution in parameter space may indicate 
parameter relationships, which can help narrow the 
parameter sets to be considered. Examples of this are 
shown in Gallaher et al.68

•	 Profile likelihood: A profile likelihood plot69,70 rep-
resents the shape of the likelihood function for a range 
of values of the parameter of interest. The observed 
peak (when the vertical axis represents log likelihood) 
gives the most likely value of the parameter of interest 
given the observed data, and is used as the parameter 
estimate. The shape of the curve can inform how the es-
timate is bounded, and whether the parameter is prac-
tically identifiable, given the data that are available for 
the parameter estimation. For example, a flat shoulder 
on one side of the estimated parameter value means 
that the parameter is poorly constrained in that direc-
tion (see Figure  5, from Steiert et al.71). Conversely, a 
narrow, paraboloid shape indicates that the parameter 
is practically identifiable with approximately symmetric 
confidence intervals. In addition to assessing practical 
identifiability, profile likelihood plots can also be used 
to communicate with experimentalists the need for ad-
ditional experiments to address the identifiability issue.
○	 Profile likelihood plots can be computationally ex-

pensive to generate because for every change in the 
parameter value, the optimization process has to be 
repeated. The calculation of profile likelihood paths 
can be accelerated by using integration-based rather 

F I G U R E  3   This figure shows how the choice of quantity of interest (QOI) can impact the outcome of a sensitivity analysis. Both panels 
show results from the same Sobol GSA as in Figure 2, with AUC and Cmax calculated for the 24 h after a single dose. Each panel uses a 
different QOI to assess the sensitivity of the QOI to various input parameters. In the left panel, the AUC of the drug concentration is used as 
the QOI and is shown to be highly sensitive to Vmax but not ka. However, when the maximum drug concentration (Cmax) is used as the QOI, 
it shows that Cmax is much less sensitive to Vmax and marginally sensitive to ka. Analyses performed using MATLAB and SimBiology R2020b; 
code available in the supplementary information. AUC, area under the curve; ka, absorption rate constant; Km, Michaelis constant; Vmax, 
maximal elimination rate
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than optimization-based methods,72,73 with imple-
mentations in R and SimBiology. Note that the pro-
file likelihood paths obtained using integration are 
approximations of those obtained by optimization.

•	 Aliasing Score: Another approach to investigating iden-
tifiability uses an “aliasing score.”74 When a pair of param-
eters is not identifiable (i.e., when multiple pairs of values 
of these parameters lead to the same model response), the 
two parameters can be said to be aliasing or shadowing 
each other. If a time-dependent model outcome of interest 
is sensitive to two parameters in similar ways over time, 
the shape of their respective time-dependent local sensi-
tivity profiles will be similar. The aliasing score quantifies 
this pairwise similarity of local sensitivity profiles. The 
score is calculated by normalizing the absolute values of 
time-dependent local sensitivity profiles and calculating 
the differences of the time-courses for each parameter 
pair. The maximum value of the differences is taken as a 
scalar measure of aliasing and is converted to a percent-
age, where 0% represents no aliasing and 100% represents 
maximum aliasing. Although the aliasing score cannot 
determine if parameters will be identifiable, the score 
can quickly indicate potential non-identifiability. Due to 
the limitations of local sensitivity analysis on which the 
aliasing score is based, this analysis is best performed after 
parameter values have been estimated. Note that, instead 
of using the time profiles from a simulation, the score 
can also be calculated using the timepoints from experi-
mental data as a form of practical identifiability and/or to 
design experimental strategies to reduce the risk of non-
identifiability of specific parameters.

Parameter estimation

Once we have identified the influential and identifiable pa-
rameters, we can perform parameter estimation. As a veri-
fication step, we should check that the units in the dataset 
are consistent with those in the model. During parameter 
estimation, the aim is to find parameter values that bring 
the model predictions as close as possible to the observed 
data, which is achieved by minimizing the value of an ob-
jective function. Most software packages will construct the 
objective function automatically from the data and model. 
The definition of the objective function is dependent on the 
type of residual error model, so we recommend considering 
which residual error model is most appropriate for the prob-
lem at hand. For example, because PK concentration meas-
urements often span multiple orders of magnitude, an error 
model that is proportional to the magnitude of the meas-
urement is often used. On the other hand, for a PD effect, 
such as a percent change, it may be most appropriate to use 
a constant (additive) error model. Instead of an error model, 
it is also possible to assign weights to each observation in the 
objective function.

QSP models often have many parameters to be esti-
mated, whereas the data being used to estimate these 
parameters are often sparse. This combination of sparse 
data and a large number of parameters, along with non-
linearities and feedback loops in the models, can result 
in the optimization algorithm converging to a local min-
imum of the objective function, yielding misleading pa-
rameter estimates. Unless we have a very good idea of the 
initial estimates, it is therefore advisable to use a global 
optimization algorithm, in order to reduce the likelihood 
of ending up in a local minimum. For large, complex sys-
tems, particle swarm or scatter search algorithms can be 
feasible global optimization options. After minimizing the 
objective function, we can assess the fit qualitatively by 
generating diagnostic plots, such as residual distribution 
plots, observation versus prediction plots, and QQ-plots, 
and by checking that the estimated parameters are within 
physiological ranges.

Model selection

In data-rich settings, goodness-of-fit criteria are com-
monly used to select between competing models accord-
ing to how well they fit the data. Criteria such as the 
Akaike information criterion (AIC), corrected AIC (AICc), 
and Bayesian information criterion (BIC; also known as 
the Schwarz-Bayesian Criterion) provide parsimonious 
model selection by rewarding a good fit to a given dataset, 
while simultaneously penalizing for additional param-
eters needed to achieve the fit.75 If a model selected using 

F I G U R E  4   The concept of identifiability of parameters can be 
explained using the analogy of a system of linear equations. For the 
two equations represented as lines in this graph, a unique solution 
for x and y exists where the lines cross. If the linear equations 
were not independent, then the lines would be parallel, and there 
would be either an infinite number of possible values of x and y (if 
the lines overlapped) or no possible values (if the lines were not 
overlapping). Figure created using MATLAB R2020b
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one of these criteria has not already been analyzed and 
evaluated as described above, it is recommended to do so, 
starting with the model verification step.

We note that the AICc is preferred over AIC as it can 
also be applied even in settings where the number of data 
points available is less than 40 per parameter.75 In complex 
QSP model settings, BIC may be preferred over AIC and 
AICc. BIC has a larger penalty for extra parameters once 
the total number of data points is greater than seven, and 
thus may be best for selecting the most likely and parsimo-
nious model. All three of these criteria tend to select over-
fitted models, so the criterion with the strictest selection 
process may be preferred.

In data-sparse settings, there can be inadequate data 
to perform model selection based on such fitting criteria. 
In such cases, following a set of best practices for model 
building may take the place of a quantitative model selec-
tion step. If multiple models are retained to handle model 
uncertainty, they can each undergo the analysis starting 
with the model verification step.

When a model has high complexity compared to com-
putational resources, we might consider alternative models, 
such as reduced versions of the original model. Reduced 
models can be achieved through techniques such as the 
method of averaging76 to remove faster time scales from 
the model, or projection-based model reduction.77 Other 
options include creating a surrogate model78 or a Gaussian 
process emulator79 of the original model in order to perform 
model evaluation analyses. The model evaluation methods 
we have recommended in this work can be performed on 
an alternative to the original model when that is preferable.

Model calibration using virtual populations

When there is not enough data available to estimate pa-
rameters, virtual populations or other sampling methods 
can be used to determine ranges and distributions for pa-
rameters. We refer to this as a model calibration, as we 
are still restricting the parameter values, even though 
we are not obtaining point estimates for the parameters. 
Throughout this work, we sometimes use the term model 
calibration to refer to methods that can only determine 
parameter ranges/distributions; other times we use model 
calibration as a more general term, to refer to these meth-
ods and/or also direct parameter estimation.

Virtual population methods use sampling to explore pa-
rameter space. In a virtual population approach, random 
samples are drawn from the permissible parameter input 
space, the model is simulated for each sample, and the sim-
ulated output is compared to observed data. A parameter 
sample (also called a virtual patient) is accepted if the asso-
ciated simulated output falls inside the range of observed 

output variable data, and otherwise is rejected. If the model 
output is smooth (i.e., differentiable) in the input parame-
ters (as for most QSP models), then there is some neighbor-
hood of each rejected point in parameter space that is also 
not valid. The resulting allowed parts of parameter space, 
with the neighborhood (i.e., sphere) removed around each 
rejected point in parameter space, could be said to resem-
ble a high-dimensional block of “Swiss cheese.”

These approaches can be used to narrow the permis-
sible ranges for parameters and to construct parameter 
distributions such that, when all samples are simulated, 
the collection of model outputs approximates the distri-
bution of the observed data. Virtual populations usually 
sample a large number of parameters (e.g., >15). Similar 
to sampling-based sensitivity analyses, a large number of 
samples is required to sufficiently explore such a large 
parameter space. Creating representative virtual popu-
lations is therefore generally computationally expensive, 
and steps should be included to ensure that the parameter 
space is sufficiently sampled.

Even though the basic concept of model calibration 
using virtual populations has been in use for several years, 
the QSP community has not yet converged on a standard-
ized approach. Multiple groups have introduced their 
own methods that vary on details such as the sampling 
method and the use of resampling or prevalence weight-
ing of virtual patients to better match the distributions of 
the observations.80–82 Several groups have also shared the 
code to perform these calibrations, such as QSP Toolbox,81 
VQM Tools,83 and gQSPSim,82 which are all based on 
SimBiology. Further work and comparisons of virtual 
population methods with optimization-based parameter 
estimation methods may be necessary to increase adop-
tion of this approach and to standardize on a common 
methodology for virtual populations.

Using a calibrated virtual population, a model can 
predict outcomes, as well as provide an indication of the 
uncertainty in those outcomes for the ensemble of virtual 
patients. Virtual patients and populations are also used 
to characterize differences between healthy subjects and 
patients, for example, so that the model can predict how 
each subpopulation would respond to interventions.

Using data to evaluate models

After the parameters in a model have been estimated, we 
can evaluate the model’s predictive capability by compar-
ing to data. We discuss three common ways to use data 
for model evaluation. We will use “validation” in place 
of “evaluation” in this section, as this is a more-common 
terminology in some communities when discussing com-
parison of model predictions to data.
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•	 External validation: When we have an independent 
dataset that has not been used to calibrate the model, we 
can compare model predictions to it, for what is called 
validation with an external dataset, or external valida-
tion. In high-risk settings, comparison to external data 
may be necessary to attain model acceptance. A new 
dataset can be acquired specifically for external valida-
tion, or a historical dataset can be repurposed for this. 
When using external validation data, it is important to 
assess whether the experimental setting for that dataset 
is appropriate for the COU of the model. For example, if 
a psoriasis therapy is being modeled, the most appropri-
ate validation dataset would be from patients with psori-
asis in a clinical trial that tests a therapeutic mechanism 
of action that is captured in the model. In addition, we 
recommend verifying the quality of the data when using 
historical datasets. Quality checks can include confirm-
ing that the Cmax order of magnitude makes sense for the 
dose level (e.g., assuming a Vcentral of around 50 ml/kg 
for large molecules), or checking that the lower limit of 
quantitation is consistent with the assay method (ligand 
binding assay vs. mass spectroscopy), or reviewing the 
methods section to verify whether reported concentra-
tions are free or total antibody concentrations.

•	 Hold-out validation: In hold-out validation, available 
data are partitioned into a training set and a test set. 
The training set usually represents the majority of the 
data (e.g., 80% of the data) and is used to calibrate the 
model. The test set is the remainder of the data and 

is used to determine the predictive performance of the 
model by comparing the test set to the simulation re-
sults from the model calibrated using the training set.

•	 Cross-validation: Ethical and/or financial limitations 
often mean that limited data are available for calibrating 
systems models. In such cases, modelers may decide to 
use all available data to calibrate a model. In k-fold cross-
validation, the process described above for hold-out vali-
dation is repeated k times, each time with 1/k of the data 
held out. Using k-fold cross-validation and an average 
measure of predictive performance of the model, helps 
guard against effects due to overfitting to specific data.

Because comparison to data is one of the few methods 
available to modelers to evaluate model predictions, we 
recommend including this in the evaluation plan prior to 
using data for model calibration, whenever the COU and 
available data permits. Note that there is no objective statis-
tic (e.g., analogous to a p value) to provide a pass/fail thresh-
old when comparing model predictions to data. Instead, the 
modeling team will need to define criteria that are appropri-
ate for the problem at hand. An example could be that the 
model predictions for a safety end point are within two-fold 
of the observations, which could be acceptable if a two-fold 
increase would still be below a known safety threshold. Or 
model simulations generated from specified parameter dis-
tributions can be compared to data with a visual predictive 
check.84,85 If comparison to data leads to a decision that the 
model should be modified, the new version of the model 

F I G U R E  5   The shape of the profile likelihood can inform experimental design to maximize the value gained from an experiment. 
Figure from Steiert et al.,71 licensed under Creative Commons Attribution License
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can have all of the analysis and evaluation steps applied to 
it as well, starting with model verification.

Uncertainty quantification

There are multiple sources of uncertainty in model pre-
dictions. Major sources of uncertainty include model 
structure and parameter value uncertainties. For model 
structure uncertainty, we can use information criteria to 
choose between alternative model structures when ade-
quate data are available for the number of parameters that 
need to be estimated. If data are not available for model 
structure selection (which is common for QSP models), 
then we recommend following the model-building best 
practices discussed earlier,21,23–26 which can be used also 
in the case when data are available. An alternative ap-
proach to handling model structure uncertainty is the use 
of model averaging with a choice of weighting scheme.86

There are several approaches to quantifying the uncer-
tainty in parameters. When appropriate data are available, 
then the values of influential and identifiable parameters 
(once they are determined using sensitivity and identifiability 
analyses) can be estimated using a maximum likelihood ap-
proach. When appropriate data are not available to use for pa-
rameter estimation, and parameter values are obtained from 
the literature, it is important to also record any standard devi-
ation, variance, or confidence interval information reported in 
the literature for these parameters. A residual error structure 
(e.g., proportional, constant, combined, or exponential error 
model) can be used to model the unexplained individual vari-
ability in addition to measurement error. Confidence intervals 
for the parameter estimates themselves can be calculated (e.g., 
from the standard error by assuming normally distributed pa-
rameter values, or else by using bootstrapping, or by using 
profile likelihood methods). Using a Bayesian approach, cred-
ible intervals can be calculated for parameters.35

Once the uncertainty has been estimated for parame-
ters, it can be propagated through the model, which de-
pends on the model structure as well as the scale of the 
model.87 See chapter 9 in Smith35 for details and examples 
demonstrating various uncertainty propagation methods. 
These include estimating credible intervals and prediction 
intervals for the model predictions.

DOCUMENTATION AND 
INFRASTRUCTURE STANDARDS

Documentation

Documentation is an important aspect of every QSP 
model, for reproducibility purposes, review purposes, and 

to maximize the re-use of a QSP model within an organi-
zation. Friedrich23 and Cucurull-Sanchez et al.25 provide 
guidance on how to document a QSP model. Here, we give 
our own recommendations for documentation, aligned 
with the three stages shown in Figure 1.

Planning

For the project-planning stage, it is important to document 
the planned activities for the project and the evaluation, as 
well as the rationale for these activities. This documenta-
tion can keep the project focused, and can reduce poten-
tial bias by prespecifying the basis for choices (e.g., which 
model selection criterion will be used). An additional ben-
efit is that stakeholders can review a written document to 
ensure common understanding and alignment of plans 
before they are implemented. Documentation should 
include: 

•	 The aims, scope, and risk assessment and how they in-
form the model evaluation plan.

•	 Data that will be available, and the strategy for how 
they will be used for parameter estimation and model 
evaluation.

•	 The model evaluation plan, including the rationale 
for including or excluding various model evaluation 
activities.

Building

The documentation of the model-building stage is used 
to aid understanding and reproducibility of the model. It 
can also provide a record of uncertainty in specific model 
structures, which can be referred to if structural changes 
are desired. Documentation should include: 

•	 The equations that define the model.
•	 A graphical representation of the model structure to aid 

in understanding and communicating the model. This 
should include all states in the model, as well as the re-
actions that take place between these states.

•	 The parameters and states (ODE state variables) and 
their physiological meaning, along with units, initial 
values, and parameter values, ranges, and any informa-
tion about their distributions. This information should 
be accompanied by sources such as experimental or 
trial data used for calibration, or literature references, 
or a statement of assumptions that were made.

•	 Detailed information about the relationships between 
the model states and parameters, to justify the structure 
of the model and equations.
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•	 The assumptions that were made during model devel-
opment and any limitations related to the use of the 
model, to make sure that the model and its predictions 
are not inadvertently used outside of the intended con-
text (cf. Friedrich23).

•	 The original code to run the model, or a representation 
of the model in a universal markup language, such as 
SBML88 or CellML.89 The exact software environment 
(version, required toolboxes/packages, and operating 
system) that was used to simulate the model should 
also be specified. Another solution is to provide a web-
based application that allows end-users of the model 
(including internal and external reviewers) to view and 
run the model (e.g., R Shiny or MATLAB Web Apps) 
or to host the code in a self-contained computational 
environment.90

Analysis and evaluation

The model analysis and evaluation activities themselves 
should be documented, as well as the outcomes of each 
analysis that was performed, and the conclusions drawn 
from those outcomes. Table  2 contains detailed recom-
mendations; here, we summarize and include some ad-
ditional comments: 

•	 A record that model/code verification was performed
•	 Sensitivity analysis
•	 Identifiability analysis
•	 Estimation of parameters (i.e., model calibration) and 

their confidence intervals or their distributions
•	 Model selection
•	 Comparison of the model predictions and prediction in-

tervals with data
•	 Additional parameter restrictions obtained using meth-

ods for sampling and comparing to data, such as virtual 
populations

•	 Interactive documents that include code, results, and 
rich-text documentation, such as Jupyter notebooks, 
MATLAB Live Scripts, or R Markdown, can also be 
used to describe model evaluation activities in detail. 
This can include the exact analyses, their results and 
a description of the methodology, outcomes, and ratio-
nale for drawing conclusions, as well as decisions made 
during the model evaluation process. These “live docu-
ments” will allow end-users to re-run each analysis or 
to make changes to an analysis to gain further insights. 
In order to manage these documents, it is advisable to 
use a version-control system such as Git or SVN.

•	 Visualizations of the results of model evaluation activ-
ities will help end-users interpret and assess the model 
evaluation. Ideally, these visualizations are standardized 

within the QSP community. An example of such a pro-
posed visualization introduced by the QSP community is 
the reliability-sensitivity plot,91 which plots reliability of 
parameter values, assessed by how appropriate the source 
is for the COU of the model, versus the sensitivity of the 
relevant model outcome to that parameter. The reliability-
sensitivity plot allows reviewers to quickly identify sensi-
tive parameters that originate from a less reliable source 
(e.g., preclinical data, when the model is being used in a 
clinical setting).

Once the model evaluation process is complete, the 
documentation should provide a complete overview of the 
entire model development and evaluation work to help 
end-users of the model to understand and assess the qual-
ity of the model. Additionally, documenting any decisions 
or actions taken based on the model will be helpful in as-
sessing the impact of the modeling, which can support fu-
ture decisions about when and how modeling should be 
performed on various projects.

Publication

Publishing a model and its analysis and evaluation pro-
vides an additional opportunity for documentation. As we 
have described above, and as described previously in the 
literature,23,25 there are guidelines for what to include when 
documenting a model, whether for internal purposes or for 
publication. An additional point we wish to make is that 
the first time a mathematical model is published, it should 
be published in a quantitative journal, with editors experi-
enced at handling quantitative papers. This may sound ob-
vious, but we know of examples of mathematical models 
that first appeared in therapeutic journals with no editors 
with quantitative training. Therapeutically-relevant re-
sults should appear in therapeutic journals only after the 
peer-review process has quantitatively vetted the detailed 
mathematical model. Peer review of a paper submitted to a 
quantitative journal should be considered part of best prac-
tices for modeling analyses. It should also be considered a 
valuable model evaluation resource, and a priority espe-
cially for high-risk settings.

Software

Software plays a pivotal role in enabling efficient and stand-
ardized model evaluation practices. Currently, a wide vari-
ety of software platforms are being used in QSP modeling, 
complicating such standardization. In addition, the soft-
ware to perform these evaluation methods can be hard to 
use for all but the most experienced modelers. Incomplete 
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T A B L E  2   Documentation for model evaluation activities

Activity Recommended documentation

Equations and model description All model equations with initial conditions, dosing regimens, parameter values 
and distributions, rationale for included mechanisms, derivations, sources for 
parameter values and mechanisms

QC and QA Results of code verification and record of any changes needed

Units Units for all model components as well as all data

Mass balance Results of mass balance analysis

Unit tests Commented, executable code for each unit test with anticipated and actual 
results (quantitative or qualitative)

Reproducibility Software and version (e.g., MATLAB R2020b, R 4.0.2), ODE solver, tolerances, 
operating system details; share all necessary executable code to allow key 
figures or predictions to be reproduced, including a fixed random seed

Sensitivity analysis

LSA Information on input parameters and model outputs used, method details (e.g., 
normalization, solver type), LSA results and interpretation

Morris method – GSA Information on input parameters and model outputs used, method details (e.g., 
normalization, solver type), results and interpretation; reliability/sensitivity 
analysis plot

PRCC – GSA Information on input parameters and model outputs used, method details, results 
and interpretation

Sobol – GSA Information on input parameters and model outputs used, method details, results 
and interpretation

Identifiability analysis

Structural identifiability (using software such as 
DAISY, COMBOS, or GenSSI)

Choice and rationale for choosing the method used; list of identifiable parameters 
and/or combinations of identifiable parameters

MCMC – practical identifiability Two-dimensional heat maps of MCMC simulation outputs for two parameters 
at a time; interpretation of results (identifiable parameters or relationships 
between parameters)

Profile likelihood – practical identifiability Profile likelihood plots and interpretation of results

Aliasing score – practical and structural 
identifiability

Inputs and outputs to analysis, similar to LSA; aliasing score heat map and time-
dependent aliasing score results; interpretation of results

Parameter estimation and model selection

Local optimization List of parameters to be estimated, optimization algorithm and settings, error 
model; parameter estimates with confidence intervals, diagnostic plots; if 
optimization is a multistep process, documentation of the sequence

Global optimization

vPop generation List of parameters to be included and their distributions, constraints, sampling 
method, prevalence weighting method, objective function; resulting 
parameter ranges and distributions, virtual population statistics, and 
comparison to data

Quantitative model selection (using a criterion 
such as AIC, AICc, or BIC)

Model selection criterion, list of models considered during the selection and their 
results

Uncertainty quantification

Parameter confidence intervals Parameter confidence intervals, preferably from bootstrap or profile likelihood 
methods, or by plotting virtual population parameter distributions

Prediction intervals Prediction interval plots, preferably with confidence intervals for the simulation 
percentiles

vPop simulation (sampling) The spread in model output by plotting percentiles (e.g., 5%, 50%, and 95%) and 
plotting these together with data

(Continues)
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documentation, lack of a large user group, the need to use 
different software platforms for different analyses in the 
same project, and/or lack of a user-friendly interface can 
all contribute to the steepness of the learning curve to use 
a different software platform. A common, well-validated, 
documented, and easy-to-use software platform could 
therefore support more rapid adoption of model evaluation 
standards in the broader QSP community.

If the QSP modeling community is unable to align on a 
common software platform, an alternative solution could 
be to standardize the code used to perform the analyses 
described in this work, such that, for example, a Sobol 
GSA performed in software A will yield results similar to 
those from the same analysis performed in software B. In 
addition, by using a common language, such as SBML,88 
models can be interchangeably used between software 
packages to aid in reproducibility of results and re-use of 
models.

Training

Model evaluation is a topic that would benefit from more 
attention in graduate student coursework, as well as in 
the training of new employees who specialize in QSP 
modeling. By making students and new employees aware 
of these evaluation methods and when it is appropriate 
to apply them, these techniques can become an integral 
part of the QSP modeling best practices. Students who 
do their graduate training in departments such as math-
ematics, statistics, and engineering, may have the chance 
to learn from faculty formally trained in these methods. 
Students with these backgrounds can benefit the QSP 
field by bringing their knowledge into the biopharma 
modeling community. Faculty doing this type of research 

have been contributing to biopharma modeling in the 
form of conference presentations and participation in fo-
cused working groups. We hope these efforts and connec-
tions to these researchers will continue to grow.

Regarding training for computational aspects of model 
evaluation, the use of standardized software and/or meth-
ods, as described above, enables companies to hire people 
who have worked at other companies or trained at differ-
ent schools more easily. Not having to completely retrain 
on software or methods greatly reduces the start-up time 
needed for those who move into new positions.

DISCUSSION

Despite examples showing the value of QSP models, they 
are not used as much as they could be in decision mak-
ing, including in regulatory settings. This is often because 
QSP models are complex and hard to qualify, leaving deci-
sion makers wondering how much confidence to have in 
a model and its predictions when making their decisions. 
Systematically performing and documenting the evalua-
tion of a QSP model supports confidence in the model’s 
predictions and can help the adoption, use, and re-use of 
QSP models.

Currently, the QSP community lacks a framework for 
the evaluation process of QSP models. Within the larger 
paradigm of “right question, right model, right analysis” 
for systems modeling work, we have therefore focused 
here on planning and performing the “right analysis,” 
building on the work of Cucurull-Sanchez et al.,25 in par-
ticular, with respect to verification, validation, and the 
documentation of these activities. However, we present a 
different perspective, focused on quantitative evaluation 
methods, with more detail on the evaluation methods 

Activity Recommended documentation

Comparison with data

External validation Plot of model predictions overlaid with external data; comparison of external 
data and data used for model calibration; may include, e.g., 2-fold and 5-fold 
discrepancy curves around the model prediction curve

Hold-out validation Plots of model predictions overlaid with hold-out data; plots of predictions vs 
observations for hold-out data; may include, e.g., 2-fold and 5-fold discrepancy 
curves around the model prediction curves

K-fold cross-validation Values of k, mean, and variance of the mean square errors from each cross-
validation; comparison to error from parameter estimation with whole dataset

Note: The first column of this table lists examples of model evaluation activities discussed in this work. The second column contains a description of each 
activity, by detailing its recommended documentation.
Abbreviations: AIC, Akaike information criterion; AICc, corrected Akaike information criterion; BIC, Bayesian information criterion; GSA, global sensitivity 
analysis; LSA, local sensitivity analysis; MCMC, Markov chain Monte Carlo; ODE, ordinary differential equation; PRCC, partial rank correlation coefficient; 
QA, quality assurance; QC, quality control; vPop, virtual population.

T A B L E  2   (Continued)
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themselves, when and how they can be applied, as well as 
further recommendations for the documentation.

In this work, we do not propose model acceptability cri-
teria, analogous to the p value used in a statistical analysis. 
Instead, we propose a sequence of analyses that, taken to-
gether, represent a complete framework in which to per-
form model evaluation, with our goal being to contribute 
to a larger body of standards within the QSP community. 
We have presented a framework to perform model evalua-
tion, as well as detailed descriptions of the methods used. 
This framework consists of three stages. In the first stage, a 
modeling and evaluation plan is defined based on the model 
aims, scope, and risk considerations. In the second stage, the 
model building takes place. In the third stage, the analyses 
outlined in the model evaluation plan are performed and 
documented to form a coherent body of evidence that builds 
confidence in a model and its predictions. We recommend 
using this framework and analyses to support QSP model de-
velopment and to maximize impact of QSP models.

In most cases, when a model will be used to make 
predictions and decisions in drug discovery or develop-
ment, we recommend the following key basic analyses 
be performed, when appropriate for the COU and project 
resources, to ensure adequate confidence in model predic-
tions: (1) global sensitivity analysis on a full or partial set 
of parameters (depending on model size, prior knowledge, 
and goals) to determine those that are most influential; (2) 
structural and practical identifiability to determine which 
of the most-influential parameters can actually be esti-
mated; (3) estimation, using available data, of the most-
influential parameters that are also identifiable; and (4) 
comparison of model predictions to available data.

Our work summarizes and builds on the work of many 
others, both within the QSP community and the wider 
computational modeling research community. One of our 
goals in mentioning this prior work, describing methods, 
and providing extensive references is to help those who 
are interested in learning more. These resources can sup-
port QSP modelers interested in learning and developing 
techniques and software to better serve QSP modeling and 
model evaluation needs.

Unlike evaluation methods for empirical PK/PD mod-
els in data-rich settings, we emphasize that there is no 
one-size-fits-all solution for evaluation of QSP models, 
because the evaluation plan should take into account the 
model aims and scope, risk, and other factors, which can 
vary significantly from one QSP model/application setting 
to another. In addition, these model evaluations often in-
volve a trade-off of resources, such as the available time, 
personnel, data, and computational capabilities.

It is our hope that this framework will help in the ef-
forts of the QSP community to align and standardize on 

evaluation methods and their documentation. We included 
examples to show how inappropriate analysis or a lack of 
analysis (e.g., LSA vs. GSA, and estimation of unidenti-
fiable parameters) can yield misleading results, even for 
simple models. More-complex models, such as many QSP 
models, are even more susceptible to these types of falla-
cies. This highlights the importance of appropriate analysis, 
as determined by model aims, model scope, risk, and other 
assessments.

There are multiple challenges regarding model evalu-
ation analyses that would benefit from further investiga-
tion and discussion within the QSP modeling community. 
These include: (1) standardized, validated, easy-to-use 
software and workflow infrastructures to perform model 
evaluation; (2) issues related to large computational ex-
pense; and (3) appropriate curricula and content for train-
ing of graduate students and early career professionals in 
model evaluation methods.

DISCLAIMER
The mention of commercial products, their sources, or 
their use in connection with the material reported herein 
is not to be construed as either an actual or implied en-
dorsement of such products by the Department of Health 
and Human Services.
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